I found a subnet mask help somewhere online years ago and have held onto it. Id like to give someone credit for this, but I have no idea where I got this. But, I myself did not come up with this. Again, I found it online somewhere and now Im sharing it with anyone who might need some subnet help. Here it is:
Netmasks Expanded (/24 through /32)
Netmask 255.255.255.0 /24 (11111111.11111111.11111111.00000000)
1 subnet
LOW IP HI IP
x.x.x.0 x.x.x.255
Netmask 255.255.255.128 /25 (11111111.11111111.11111111.10000000)
2 subnets
LOW IP HI IP
x.x.x.0 x.x.x.127
x.x.x.128 x.x.x.255
Netmask 255.255.255.192 /26 (11111111.11111111.11111111.11000000)
4 subnets
x.x.x.0 x.x.x.63
x.x.x.64 x.x.x.127
x.x.x.128 x.x.x.191
x.x.x.192 x.x.x.255
Netmask 255.255.255.224 /27 (11111111.11111111.11111111.11100000)
8 subnets
x.x.x.0 x.x.x.31
x.x.x.32 x.x.x.63
x.x.x.64 x.x.x.95
x.x.x.96 x.x.x.127
x.x.x.128 x.x.x.159
x.x.x.160 x.x.x.191
x.x.x.192 x.x.x.223
x.x.x.224 x.x.x.255
Netmask 255.255.255.240 /28 (11111111.11111111.11111111.11110000)
16 subnets
x.x.x.0 x.x.x.15
x.x.x.16 x.x.x.31
x.x.x.32 x.x.x.47
x.x.x.48 x.x.x.63
x.x.x.64 x.x.x.79
x.x.x.80 x.x.x.95
x.x.x.96 x.x.x.111
x.x.x.112 x.x.x.127
x.x.x.128 x.x.x.143
x.x.x.144 x.x.x.159
x.x.x.160 x.x.x.175
x.x.x.176 x.x.x.191
x.x.x.192 x.x.x.207
x.x.x.208 x.x.x.223
x.x.x.224 x.x.x.239
x.x.x.240 x.x.x.255
Netmask 255.255.255.248 /29 (11111111.11111111.11111111.11111000)
32 subnets
x.x.x.0 x.x.x.7
x.x.x.8 x.x.x.15
x.x.x.16 x.x.x.23
x.x.x.24 x.x.x.31
x.x.x.32 x.x.x.39
x.x.x.40 x.x.x.47
x.x.x.48 x.x.x.55
x.x.x.56 x.x.x.63
x.x.x.64 x.x.x.71
x.x.x.72 x.x.x.79
x.x.x.80 x.x.x.87
x.x.x.88 x.x.x.95
x.x.x.96 x.x.x.103
x.x.x.104 x.x.x.111
x.x.x.112 x.x.x.119
x.x.x.120 x.x.x.127
x.x.x.128 x.x.x.135
x.x.x.136 x.x.x.143
x.x.x.144 x.x.x.151
x.x.x.152 x.x.x.159
x.x.x.160 x.x.x.167
x.x.x.168 x.x.x.175
x.x.x.176 x.x.x.183
x.x.x.184 x.x.x.191
x.x.x.192 x.x.x.199
x.x.x.200 x.x.x.207
x.x.x.208 x.x.x.215
x.x.x.216 x.x.x.223
x.x.x.224 x.x.x.231
x.x.x.232 x.x.x.239
x.x.x.240 x.x.x.247
x.x.x.248 x.x.x.255
Netmask 255.255.255.252 /30 (11111111.11111111.11111111.11111100)
64 subnets
LOW IP HI IP
x.x.x.0 x.x.x.3
x.x.x.4 x.x.x.7
x.x.x.8 x.x.x.11
x.x.x.12 x.x.x.15
x.x.x.16 x.x.x.19
x.x.x.20 x.x.x.23
x.x.x.24 x.x.x.27
x.x.x.28 x.x.x.31
x.x.x.32 x.x.x.35
x.x.x.36 x.x.x.39
x.x.x.40 x.x.x.43
x.x.x.44 x.x.x.47
x.x.x.48 x.x.x.51
x.x.x.52 x.x.x.55
x.x.x.56 x.x.x.59
x.x.x.60 x.x.x.63
x.x.x.64 x.x.x.67
x.x.x.68 x.x.x.71
x.x.x.72 x.x.x.75
x.x.x.76 x.x.x.79
x.x.x.80 x.x.x.83
x.x.x.84 x.x.x.87
x.x.x.88 x.x.x.91
x.x.x.92 x.x.x.95
x.x.x.96 x.x.x.99
x.x.x.100 x.x.x.103
x.x.x.104 x.x.x.107
x.x.x.108 x.x.x.111
x.x.x.112 x.x.x.115
x.x.x.116 x.x.x.119
x.x.x.120 x.x.x.123
x.x.x.124 x.x.x.127
x.x.x.128 x.x.x.131
x.x.x.132 x.x.x.135
x.x.x.136 x.x.x.139
x.x.x.140 x.x.x.143
x.x.x.144 x.x.x.147
x.x.x.148 x.x.x.151
x.x.x.152 x.x.x.155
x.x.x.156 x.x.x.159
x.x.x.160 x.x.x.163
x.x.x.164 x.x.x.167
x.x.x.168 x.x.x.171
x.x.x.172 x.x.x.175
x.x.x.176 x.x.x.179
x.x.x.180 x.x.x.183
x.x.x.184 x.x.x.187
x.x.x.188 x.x.x.191
x.x.x.192 x.x.x.195
x.x.x.196 x.x.x.199
x.x.x.200 x.x.x.203
x.x.x.204 x.x.x.207
x.x.x.208 x.x.x.211
x.x.x.212 x.x.x.215
x.x.x.216 x.x.x.219
x.x.x.220 x.x.x.223
x.x.x.224 x.x.x.227
x.x.x.228 x.x.x.231
x.x.x.232 x.x.x.235
x.x.x.236 x.x.x.239
x.x.x.240 x.x.x.243
x.x.x.244 x.x.x.247
x.x.x.248 x.x.x.251
x.x.x.252 x.x.x.255
net mask:
1111 1100 == 252
--------------------------------------------------------------------------------
Pozar's two-bit(tm) addressing
4-bit m m m m
2-bit m m
(.1) 0 0 0 0 0 0 0 1 (.2) 0 0 0 0 0 0 1 0
(.17) 0 0 0 1 0 0 0 1 (.18) 0 0 0 1 0 0 1 0
(.33) 0 0 1 0 0 0 0 1 (.34) 0 0 1 0 0 0 1 0
(.49) 0 0 1 1 0 0 0 1 (.50) 0 0 1 1 0 0 1 0
(.65) 0 1 0 0 0 0 0 1 (.66) 0 1 0 0 0 0 1 0
(.129) 1 0 0 0 0 0 0 1 (.130) 1 0 0 0 0 0 1 0
(.193) 1 1 0 0 0 0 0 1 (.194) 1 1 0 0 0 0 1 0
(.225) 1 1 1 0 0 0 0 1 (.226) 1 1 1 0 0 0 1 0
--------------------------------------------------------------------------------
Younker's tables
Here's a table showing the relationship between the / notation, the byte
notation, and the corresponding binary numbers (with a dot every eight
digits) for the 32 bit addresses. I've thrown in a count of how many
Class A/B/C networks the larger networks encompass.
/ Notation Binary Byte Notation #Class
---------- ----------------------------------- -------------- ------
/0 00000000.00000000.00000000.00000000 0.0.0.0 256 A
/1 10000000.00000000.00000000.00000000 128.0.0.0 128 A
/2 11000000.00000000.00000000.00000000 192.0.0.0 64 A
/3 11100000.00000000.00000000.00000000 224.0.0.0 32 A
/4 11110000.00000000.00000000.00000000 240.0.0.0 16 A
/5 11111000.00000000.00000000.00000000 248.0.0.0 8 A
/6 11111100.00000000.00000000.00000000 252.0.0.0 4 A
/7 11111110.00000000.00000000.00000000 254.0.0.0 2 A
/8 11111111.00000000.00000000.00000000 255.0.0.0 1 A
/9 11111111.10000000.00000000.00000000 255.128.0.0 128 B
/10 11111111.11000000.00000000.00000000 255.192.0.0 64 B
/11 11111111.11100000.00000000.00000000 255.224.0.0 32 B
/12 11111111.11110000.00000000.00000000 255.240.0.0 16 B
/13 11111111.11111000.00000000.00000000 255.248.0.0 8 B
/14 11111111.11111100.00000000.00000000 255.252.0.0 4 B
/15 11111111.11111110.00000000.00000000 255.254.0.0 2 B
/16 11111111.11111111.00000000.00000000 255.255.0.0 1 B
/17 11111111.11111111.10000000.00000000 255.255.128.0 128 C
/18 11111111.11111111.11000000.00000000 255.255.192.0 64 C
/19 11111111.11111111.11100000.00000000 255.255.224.0 32 C
/20 11111111.11111111.11110000.00000000 255.255.240.0 16 C
/21 11111111.11111111.11111000.00000000 255.255.248.0 8 C
/22 11111111.11111111.11111100.00000000 255.255.252.0 4 C
/23 11111111.11111111.11111110.00000000 255.255.254.0 2 C
/24 11111111.11111111.11111111.00000000 255.255.255.0 1 C
/25 11111111.11111111.11111111.10000000 255.255.255.128
/26 11111111.11111111.11111111.11000000 255.255.255.192
/27 11111111.11111111.11111111.11100000 255.255.255.224
/28 11111111.11111111.11111111.11110000 255.255.255.240
/29 11111111.11111111.11111111.11111000 255.255.255.248
/30 11111111.11111111.11111111.11111100 255.255.255.252
/31 11111111.11111111.11111111.11111110 255.255.255.254
/32 11111111.11111111.11111111.11111111 255.255.255.255
Here's an example of how to get from the binary number 11000000 to
the decimal number (192).
11000000 => 128*1 + 64*1 + 32*0 + 16*0 + 8*0 + 4*0 + 2*0 + 1*0
= 128 + 64 + 0 + 0 + 0 + 0 + 0 + 0
= 128 + 64
= 192
Another example (using an arbitrarily chosen binary number):
10000100 => 128*1 + 64*0 + 32*0 + 16*0 + 8*0 + 4*1 + 2*0 + 1*0
= 128 + 0 + 0 + 0 + 0 + 4 + 0 + 0
= 128 + 4
= 132
No comments:
Post a Comment
Your comment will be reviewed for approval. Thank you for submitting your comments.